Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 253
1.
Front Pharmacol ; 15: 1360633, 2024.
Article En | MEDLINE | ID: mdl-38716236

Aims: This study aimed to synthesize the evidence of the comparative effectiveness and safety of Ophiocordyceps sinensis (OS) preparations combined with renin-angiotensin system inhibitors (RASi) for diabetic kidney disease (DKD). Methods: Eight databases were searched from their inception to May 2023. Systematic reviews (SRs) of OS preparations combined with RASi for DKD were identified. Randomized controlled trials (RCTs) from the included SRs and additional searching were performed for data pooling. Cochrane risk-of-bias 2 (RoB 2) tool and AMSTAR 2 were used to evaluate the methodological quality of RCTs and SRs, respectively. A Bayesian network meta-analysis was performed to compare the add-on effect and safety of OS preparations for DKD. The certainty of evidence was graded using the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) approach. Results: Fourteen SRs were included, whose methodological quality was assessed as high (1/14) or critically low (13/14). After combining additional searching, 157 RCTs were included, involving 13,143 participants. The quality of the RCTs showed some concerns (155/157) or high risk (2/157). Jinshuibao capsules and tablets, Bailing capsules and tablets, and Zhiling capsules were evaluated. Compared to RASi, adding either of the OS capsular preparations resulted in a decreased 24-h urinary total protein levels. OS preparations ranked differently in each outcome. Jinshuibao capsules plus RASi were beneficial in reducing urinary protein, serum creatinine, serum urea nitrogen, and blood glucose levels, with moderate-certainty evidence. No serious adverse events were observed after adding OS to RASi. Conclusion: Combining OS capsular preparations with RASi appeared to be associated with decreased urinary total protein levels in DKD patients. Further high-quality studies are needed to confirm. Systematic Review Registration: INPASY202350066.

2.
BMC Med ; 22(1): 154, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38609982

BACKGROUND: Colorectal cancer (CRC) lacks established biomarkers or molecular targets for predicting or enhancing radiation response. Phosphatidylinositol-3,4,5-triphosphate-dependent Rac exchange factor 2 (PREX2) exhibits intricate implications in tumorigenesis and progression. Nevertheless, the precise role and underlying mechanisms of PREX2 in CRC radioresistance remain unclear. METHODS: RNA-seq was employed to identify differentially expressed genes between radioresistant CRC cell lines and their parental counterparts. PREX2 expression was scrutinized using Western blotting, real-time PCR, and immunohistochemistry. The radioresistant role of PREX2 was assessed through in vitro colony formation assay, apoptosis assay, comet assay, and in vivo xenograft tumor models. The mechanism of PREX2 was elucidated using RNA-seq and Western blotting. Finally, a PREX2 small-molecule inhibitor, designated PREX-in1, was utilized to enhance the efficacy of ionizing radiation (IR) therapy in CRC mouse models. RESULTS: PREX2 emerged as the most significantly upregulated gene in radioresistant CRC cells. It augmented the radioresistant capacity of CRC cells and demonstrated potential as a marker for predicting radioresistance efficacy. Mechanistically, PREX2 facilitated DNA repair by upregulating DNA-PKcs, suppressing radiation-induced immunogenic cell death, and impeding CD8+ T cell infiltration through the cGAS/STING/IFNs pathway. In vivo, the blockade of PREX2 heightened the efficacy of IR therapy. CONCLUSIONS: PREX2 assumes a pivotal role in CRC radiation resistance by inhibiting the cGAS/STING/IFNs pathway, presenting itself as a potential radioresistant biomarker and therapeutic target for effectively overcoming radioresistance in CRC.


Apoptosis , Colorectal Neoplasms , Animals , Mice , Humans , CD8-Positive T-Lymphocytes , Disease Models, Animal , Gene Expression , Colorectal Neoplasms/genetics , Colorectal Neoplasms/radiotherapy , Guanine Nucleotide Exchange Factors
3.
Urolithiasis ; 52(1): 64, 2024 Apr 13.
Article En | MEDLINE | ID: mdl-38613668

Radiomics and machine learning have been extensively utilized in the realm of urinary stones, particularly in forecasting stone treatment outcomes. The objective of this study was to integrate clinical variables and radiomic features to develop a machine learning model for predicting the stone-free rate (SFR) following percutaneous nephrolithotomy (PCNL). A total of 212 eligible patients who underwent PCNL surgery at the Second Affiliated Hospital of Nanchang University were included in a retrospective analysis. Preoperative clinical variables and non-contrast-enhanced CT images of all patients were collected, and radiomic features were extracted after delineating the stone ROI. Univariate analysis was conducted to identify clinical variables strongly correlated with the stone-free rate after PCNL, and the least absolute shrinkage and selection operator algorithm (lasso regression) was utilized to screen radiomic features. Four supervised machine learning algorithms, including Logistic Regression, Random Forest (RF), Extreme Gradient Boosting (XGBoost), and Gradient Boosting Decision Tree (GBDT), were employed. The clinical variables with strong correlation and screened radiomic features were integrated into the four machine learning algorithms to construct a prediction model, and the receiver operating curve was plotted. The area under the receiver operating curve (AUC), the accuracy rate, the specificity, etc., were used to evaluate the predictive performance of the four models. After analyzing postoperative statistics, the stone-free rate following the procedure was found to be 70.3% (n = 149). Among the various clinical variables examined, factors, such as stone number, stone diameter, stone CT value, stone location, and history of stone surgery, were identified as statistically significant in relation to the stone-free rate after PCNL. A total of 121 radiomic features were extracted, and through lasso regression, 7 features most closely associated with the stone-free rate post-PCNL were identified. The predictive accuracy of different models (Logistic Regression, RF, XGBoost, and GBDT) for determining the stone-free rate after PCNL was evaluated, yielding accuracies of 78.1%, 76.6%, 75.0%, and 73.4%, respectively. The corresponding area under the curve AUC (95%CI) were 0.85 (0.83-0.89), 0.81 (0.76-0.85), 0.82 (0.78-0.85), and 0.77 (0.73-0.81), positioning these models among the top performers in logistic regression prediction. In terms of predictive importance scores, the key factors identified by the logistic regression model were number of stone, zone percentage, stone diameter, and surface area. Similarly, the RF model highlighted number of stone, stone CT value, stone diameter, and surface area as the top predictors. Among the four machine learning models, the logistic regression model demonstrated the highest accuracy and discrimination ability in predicting the stone-free rate following PCNL. In comparison to XGBoost and GBDT, RF also exhibited superior accuracy and a certain level of discrimination ability. However, based on the performance of all four models, logistic regression is more likely to aid in clinical decision-making by assisting clinicians in diagnosing PCNL in patients. This enables us to effectively predict the presence of residual stones post-surgery and ultimately select patients who are suitable candidates for PCNL.


Nephrolithotomy, Percutaneous , Urinary Calculi , Humans , Radiomics , Retrospective Studies , Machine Learning
4.
Biomed Pharmacother ; 174: 116623, 2024 May.
Article En | MEDLINE | ID: mdl-38643545

Postpartum depression (PPD) has a significant impact on the physical and mental health of mothers, potentially leading to symptoms such as low mood, fatigue, and decreased appetite. It may also affect the healthy growth of the infant. The onset of PPD is closely related to abnormalities in inflammation and the immune system. PPD patients exhibit abnormalities in the proportion of peripheral blood immune cells, along with an increase in pro-inflammatory cytokines. Excessive pro-inflammatory cytokines in peripheral blood can disrupt the blood-brain barrier (BBB) by activating astrocytes and reducing transendothelial electrical resistance (TEER), allowing peripheral immune cells or cytokines to enter the brain and trigger inflammation, ultimately leading to the onset of depression. In addition, PPD lacks safe and effective treatment medications. In this study, we collected peripheral blood from both healthy postpartum women and those with PPD, conducted single cell RNA sequencing (scRNA-seq), and used an in-house analytical tool scSTAR to reveal that PPD patients exhibit elevated proportions of peripheral blood cDC2 and Proliferation B cells, which are significantly correlated with IL-1ß. Additionally, animal experiments were designed to validate that 919 granules can improve PPD by modulating the levels of peripheral blood IL-1ß, providing a potential therapeutic mechanism for PPD treatment.


Depression, Postpartum , Interleukin-1beta , Animals , Female , Humans , Male , Mice , B-Lymphocytes/drug effects , B-Lymphocytes/metabolism , Depression, Postpartum/blood , Depression, Postpartum/drug therapy , Interleukin-1beta/blood , Young Adult , Adult
5.
Oncoimmunology ; 13(1): 2344905, 2024.
Article En | MEDLINE | ID: mdl-38659649

T cell immunity is critical for human defensive immune response. Exploring the key molecules during the process provides new targets for T cell-based immunotherapies. CMC1 is a mitochondrial electron transport chain (ETC) complex IV chaperon protein. By establishing in-vitro cell culture system and Cmc1 gene knock out mice, we evaluated the role of CMC1 in T cell activation and differentiation. The B16-OVA tumor model was used to test the possibility of targeting CMC1 for improving T cell anti-tumor immunity. We identified CMC1 as a positive regulator in CD8+T cells activation and terminal differentiation. Meanwhile, we found that CMC1 increasingly expressed in exhausted T (Tex) cells. Genetic lost of Cmc1 inhibits the development of CD8+T cell exhaustion in mice. Instead, deletion of Cmc1 in T cells prompts cells to differentiate into metabolically and functionally quiescent cells with increased memory-like features and tolerance to cell death upon repetitive or prolonged T cell receptor (TCR) stimulation. Further, the in-vitro mechanistic study revealed that environmental lactate enhances CMC1 expression by inducing USP7, mediated stabilization and de-ubiquitination of CMC1 protein, in which a mechanism we propose here that the lactate-enriched tumor microenvironment (TME) drives CD8+TILs dysfunction through CMC1 regulatory effects on T cells. Taken together, our study unraveled the novel role of CMC1 as a T cell regulator and its possibility to be utilized for anti-tumor immunotherapy.


CD8-Positive T-Lymphocytes , Mice, Knockout , Mitochondrial Proteins , Animals , Mice , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Differentiation/immunology , Lymphocyte Activation/immunology , Melanoma, Experimental/immunology , Melanoma, Experimental/pathology , Melanoma, Experimental/genetics , Mice, Inbred C57BL , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics
6.
Korean J Physiol Pharmacol ; 28(3): 219-227, 2024 May 01.
Article En | MEDLINE | ID: mdl-38682170

Bladder cancer remains the 10th most common cancer worldwide. In recent years, metformin has been found to have potential anti-bladder cancer activity while high concentration of IC50 at millimolar level is needed, which could not be reached by regular oral administration route. Thus, higher efficient agent is urgently demanded for clinically treating bladder cancer. Here, by conjugating artesunate to metformin, a novel artesunate-metformin dimer triazine derivative AM2 was designed and synthesized. The inhibitory effect of AM2 on bladder cancer cell line T24 and the mechanism underlying was determined. Anti-tumor activity of AM2 was assessed by MTT, cloning formation and wound healing assays. Decreasing effect of AM2 on lipogenesis was determined by oil red O staining. The protein expressions of Clusterin, SREBP1 and FASN in T24 cells were evaluated by Western blotting. The results show that AM2 significantly inhibited cell proliferation and migration at micromolar level, much higher than parental metformin. AM2 reduced lipogenesis and down-regulated the expressions of Clusterin, SREBP1 and FASN. These results suggest that AM2 inhibits the growth of bladder cancer cells T24 by inhibiting cellular lipogenesis associated with the Clusterin/SREBP1/FASN signaling pathway.

7.
Sci Total Environ ; 926: 171980, 2024 May 20.
Article En | MEDLINE | ID: mdl-38537814

Granular activated carbon (GAC), a porous carbon-based material, provides increased attachment space for functional microorganisms and enhances nitrogen removal by facilitating extracellular electron transfer in the anammox process. This study investigates the effects of GAC on the biosynthesis of microbial extracellular secretions (MESs) and explores the roles of these secretions in anammox activities. Four lab-scale reactors were operated: two downstream UASB reactors (D1 and D2) receiving effluents from the upstream UASB reactors (U1: no-GAC, U2: yes-GAC). Our results indicate that MESs were enhanced with the addition of GAC. The effluent from U2 exhibited a 59.62 % higher amino acid content than that from U1. These secretions contributed to an increase in the nitrogen loading rate (NLR) in the downstream reactors. Specifically, NLR in D1 increased from 130.5 to 142.7 g N/m3/day, and in D2, it escalated from 137.5 to 202.8 g N/m3/day, likely through acting as cross-feeding substrates or vital nutrients. D2 also showed increased anammox bacterial activity, enriched Ca. Brocadia population and hao gene abundance. Furthermore, this study revealed that D2 sludge has significantly higher extracellular polymeric substances (EPS) (48.71 mg/g VSS) and a larger average granule size (1.201 ± 0.119 mm) compared to D1 sludge. Overall, GAC-stimulated MESs may have contributed to the enhanced performance of the anammox process.


Charcoal , Sewage , Sewage/microbiology , Charcoal/metabolism , Anaerobic Ammonia Oxidation , Bioreactors/microbiology , Bacteria/metabolism , Anaerobiosis , Nitrogen/metabolism , Oxidation-Reduction
8.
Brain Behav Immun ; 119: 84-95, 2024 Mar 27.
Article En | MEDLINE | ID: mdl-38552922

Autism spectrum disorder (ASD) is a neurodevelopmental disorder that severely affects individuals' daily life and social development. Unfortunately, there are currently no effective treatments for ASD. Dexmedetomidine (DEX) is a selective agonist of α2 adrenergic receptor (α2AR) and is widely used as a first-line medication for sedation and hypnosis in clinical practice. In recent years, there have been reports suggesting its potential positive effects on improving emotional and cognitive functions. However, whether dexmedetomidine has therapeutic effects on the core symptoms of ASD, namely social deficits and repetitive behaviors, remains to be investigated. In the present study, we employed various behavioral tests to assess the phenotypes of animals, including the three-chamber, self-grooming, marble burying, open field, and elevated plus maze. Additionally, electrophysiological recordings, western blotting, qPCR were mainly used to investigate and validate the potential mechanisms underlying the role of dexmedetomidine. We found that intraperitoneal injection of dexmedetomidine in ASD model mice-BTBR T+ Itpr3tf/J (BTBR) mice could adaptively improve their social deficits. Further, we observed a significant reduction in c-Fos positive signals and interleukin-6 (IL-6) expression level in the prelimbic cortex (PrL) of the BTBR mice treated with dexmedetomidine. Enhancing or inhibiting the action of IL-6 directly affects the social behavior of BTBR mice. Mechanistically, we have found that NF-κB p65 is a key pathway regulating IL-6 expression in the PrL region. In addition, we have confirmed that the α2AR acts as a receptor switch mediating the beneficial effects of dexmedetomidine in improving social deficits. This study provides the first evidence of the beneficial effects of dexmedetomidine on core symptoms of ASD and offers a theoretical basis and potential therapeutic approach for the clinical treatment of ASD.

9.
Environ Res ; 251(Pt 1): 118573, 2024 Feb 29.
Article En | MEDLINE | ID: mdl-38431070

Anaerobically digested sludge supernatant, characterized by its high ammonia and low biodegradable chemical oxygen demand (COD) content, has raised concerns when returned to mainstream treatment lines due to potential impacts on effluent quality. Addressing this, an aerobic granular sludge (AGS) reactor adopted nitritation/denitritation with external COD addition was utilized and achieved a considerable nitrogen treatment capacity of 4.2 kg N/m3/d, reaching over 90% removal efficiencies for both ammonia and total inorganic nitrogen. This study applied progressively increased nitrogen loading to select for a microbial community that exhibited high nitrogen oxidation and reduction rates, demonstrating peak rates of 0.5 g N/g VSS/d and 3 g N/g VSS/d, respectively. The enrichment of highly efficient microbial community was achieved along with the increased biomass density peaked at 17 g/L MLVSS, with the system retaining small-sized granular sludge at 0.5 mm. The primary ammonia oxidizing bacteria was Nitrosomonas, while Thauera was the dominated denitrifiers. Quantitative polymerase chain reaction analyses reinforced the enhanced nitrogen removal capacity based on the progressively increased abundance of nitrogen cycling functional genes. The high nitrogen treatment capacity, synergistic attributes of high specific microbial activities and the substantial biomass retention, suggest the AGS's efficacy and capacity in ammonia rich wastewater treatment.

10.
Int Immunopharmacol ; 131: 111858, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38492336

BACKGROUND: Diabetes is a global health problem whose common complication is diabetic cardiomyopathy, characterized by chronic inflammation of the heart muscle. Macrophages are the main white blood cells found in the resting heart. Therefore, we investigated the underling mechanism of macrophage on myocardial fibrosis in diabetes. METHODS: Here, echocardiography was utilized to evaluate cardiac function, and the degree of myocardial fibrosis was assessed using Masson's trichrome staining, followed by single-cell RNA sequencing (scRNA-seq) to analyze the phenotype, function, developmental trajectory, and interactions between immune cells, endothelial cells (ECs), and fibroblasts (FBs) in the hearts of db/db mice at different stages of diabetes. Macrophages and cardiac fibroblasts were also co-cultured in order to study the signaling between macrophages and fibroblasts. RESULTS: We found that with the development of diabetes mellitus, myocardial hypertrophy and fibrosis occurred that was accompanied by cardiac dysfunction. A significant proportion of immune cells, endothelial cells, and fibroblasts were identified by RNA sequencing. The most significant changes observed were in macrophages, which undergo M1 polarization and are critical for oxidative stress and extracellular matrix (ECM) formation. We further found that M1 macrophages secreted interleukin-1ß (IL-1ß), which interacted with the receptor on the surface of fibroblasts, to cause myocardial fibrosis. In addition, crosstalk between M1 macrophages and endothelial cells also plays a key role in fibrosis and immune response regulation through IL-1ß and corresponding receptors. CONCLUSIONS: M1 macrophages mediate diabetic myocardial fibrosis through interleukin-1ß interaction with fibroblasts.


Diabetes Mellitus , Diabetic Cardiomyopathies , Mice , Animals , Interleukin-1beta , Endothelial Cells , Macrophages , Fibrosis
11.
Biosci Rep ; 44(3)2024 Mar 29.
Article En | MEDLINE | ID: mdl-38391133

Rapeseed cake serves as a by-product in the oil extraction industry, characterized by its elevated protein content. However, the presence of antinutritional factors limits the utilization of rapeseed cake as a viable protein source. In this study, different doses of γ-irradiation were used to irradiate rapeseed cake and rapeseed protein isolate was extracted through a modified alkaline solution and acid precipitation method from rapeseed cake. The chemical composition and in vivo acute toxicity of rapeseed protein isolate were determined. The protein recovery rate of rapeseed protein isolate was 39.08 ± 3.01% after irradiation, while the content of antinutritional factors was significantly reduced. Moreover, γ-irradiation did not have any experimentally related effects on clinical observations or clinicopathology in mice. Overall, the reduced antinutrients and increased functional properties suggest that the irradiation of rapeseed cake (<9 kGy) could be utilized as a pre-treatment in the development of rapeseed cake-based value-added protein products.


Brassica napus , Brassica rapa , Animals , Mice , Brassica napus/chemistry , Brassica rapa/chemistry
12.
Infect Drug Resist ; 17: 697-708, 2024.
Article En | MEDLINE | ID: mdl-38405056

Objective: This study aimed to describe and compare the epidemiological, demographic, clinical, laboratory and radiological characteristics as well as the complications, treatments, and outcomes of these patients. Methods: We retrospectively investigated clinical data of patients with C. psittaci infection (psittacosis) in eight Grade IIIA hospitals of Fujian. Metagenomic next-generation sequencing (mNGS) was used identify C. psittaci in clinical samples of all included patients. Results: A total of 74 patients (39 severe/35 non-severe) was diagnosed with psittacosis, 25 (33.8%) of whom had history of poultry exposure. Common symptoms included high fever (98% [37/74]), fatigue (52.7% [39/74]), and dyspnea (51.4% [38/74]). Common manifestations in imaging included consolidation (89.2%), pleural effusion (77.0%), and air bronchogram (66.2%). Common complications included acute respiratory distress syndrome (55.4% [41/74]), type I respiratory failure (52.7% [39/74]), acute liver injury (41.9% [31/74]), and secondary infection (27.0% [20/74]). The in-hospital mortality rate was 8.11% (6/74). Conclusion: C. psittaci infection is represents an underestimated cause of CAP. For SCAP patients with poultry and bird contact history, specimens were encouraged to be sended for mNGS test in time. C. psittaci infection can lead to severe, multiple system involvement, and several complications. mNGS facilitate timely diagnosis of C. psittaci infection.

13.
Micromachines (Basel) ; 15(2)2024 Feb 10.
Article En | MEDLINE | ID: mdl-38398991

Flat panel displays are electronic displays that are thin and lightweight, making them ideal for use in a wide range of applications, from televisions and computer monitors to mobile devices and digital signage. The Thin-Film Transistor (TFT) layer is responsible for controlling the amount of light that passes through each pixel and is located behind the liquid crystal layer, enabling precise image control and high-quality display. As one of the important parameters to evaluate the display performance, the faster response time provides more frames in a second, which benefits many high-end applications, such as applications for playing games and watching movies. To further improve the response time, the single-pixel charging efficiency is investigated in this paper by optimizing the TFT dimensions in gate driver circuits in active-matrix liquid crystal displays. The accurate circuit simulation model is developed to minimize the signal's fall time (Tf) by optimizing the TFT width-to-length ratio. Our results show that using a driving TFT width of 6790 µm and a reset TFT width of 640 µm resulted in a minimum Tf of 2.6572 µs, corresponding to a maximum pixel charging ratio of 90.61275%. These findings demonstrate the effectiveness of our optimization strategy in enhancing pixel charging efficiency and improving display performance.

14.
Photoacoustics ; 35: 100583, 2024 Feb.
Article En | MEDLINE | ID: mdl-38312807

A high sensitivity and ultra-low concentration range photoacoustic spectroscopy (PAS) gas detection system, which was based on a novel trapezoid compound ellipsoid resonant photoacoustic cell (TCER-PAC) and partial least square (PLS), was proposed to detect acetylene (C2H2) gas. In the concentration range of 0.5 ppm ∼ 10.0 ppm, the limit of detection (LOD) values of TCER-PAC-based PAS system without data processing was 66.4 ppb, which was lower than that of the traditional trapezoid compound cylindrical resonant photoacoustic cell (TCCR-PAC). The experimental results indicated that the TCER-PAC had higher sensitivity than of TCCR-PAC. Within the concentration range of 12.5 ppb ∼ 125.0 ppb, the LOD and limit of quantification (LOQ) of TCER-PAC-based PAS system combined with PLS regression algorithm were 1.1 ppb and 3.7 ppb, respectively. The results showed that higher detection sensitivity and lower LOD were obtained by PAS system with TCER-PAC and PLS than that of TCCR-PAC-based PAS system.

15.
Adv Mater ; 36(18): e2310663, 2024 May.
Article En | MEDLINE | ID: mdl-38267010

Organic phosphorescent scintillating materials have shown great potential for applications in radiography and radiation detection due to their efficient utilization of excitons. However, revealing the relationship between molecule stacking and the phosphorescent radioluminescence of scintillators is still challenging. This study reports on two phenothiazine derivatives with polymorphism-dependent phosphorescence radioluminescence. The experiments reveal that molecule stacking significantly affects the non-radiation decay of the triplet excitons of scintillators, which further determines the phosphorescence scintillation performance under X-ray irradiation. These phosphorescent scintillators exhibit high radio stability and have a low detection limit of 278 nGys-1. Additionally, the potential application of these scintillators in X-ray radiography, based on their X-ray excited radioluminescence properties, is demonstrated. These findings provide a guideline for obtaining high-performance phosphorescent scintillating materials by shedding light on the effect of crystal packing on the radioluminescence of organic molecules.

16.
PLoS Genet ; 20(1): e1011037, 2024 Jan.
Article En | MEDLINE | ID: mdl-38206971

Explicitly sharing individual level data in genomics studies has many merits comparing to sharing summary statistics, including more strict QCs, common statistical analyses, relative identification and improved statistical power in GWAS, but it is hampered by privacy or ethical constraints. In this study, we developed encG-reg, a regression approach that can detect relatives of various degrees based on encrypted genomic data, which is immune of ethical constraints. The encryption properties of encG-reg are based on the random matrix theory by masking the original genotypic matrix without sacrificing precision of individual-level genotype data. We established a connection between the dimension of a random matrix, which masked genotype matrices, and the required precision of a study for encrypted genotype data. encG-reg has false positive and false negative rates equivalent to sharing original individual level data, and is computationally efficient when searching relatives. We split the UK Biobank into their respective centers, and then encrypted the genotype data. We observed that the relatives estimated using encG-reg was equivalently accurate with the estimation by KING, which is a widely used software but requires original genotype data. In a more complex application, we launched a finely devised multi-center collaboration across 5 research institutes in China, covering 9 cohorts of 54,092 GWAS samples. encG-reg again identified true relatives existing across the cohorts with even different ethnic backgrounds and genotypic qualities. Our study clearly demonstrates that encrypted genomic data can be used for data sharing without loss of information or data sharing barrier.


Genome-Wide Association Study , Privacy , Humans , Genome-Wide Association Study/methods , Genotype , Software , Genomics
17.
Int J Oral Sci ; 16(1): 9, 2024 Jan 30.
Article En | MEDLINE | ID: mdl-38287007

Tumor progression is closely related to tumor tissue metabolism and reshaping of the microenvironment. Oral squamous cell carcinoma (OSCC), a representative hypoxic tumor, has a heterogeneous internal metabolic environment. To clarify the relationship between different metabolic regions and the tumor immune microenvironment (TME) in OSCC, Single cell (SC) and spatial transcriptomics (ST) sequencing of OSCC tissues were performed. The proportion of TME in the ST data was obtained through SPOTlight deconvolution using SC and GSE103322 data. The metabolic activity of each spot was calculated using scMetabolism, and k-means clustering was used to classify all spots into hyper-, normal-, or hypometabolic regions. CD4T cell infiltration and TGF-ß expression is higher in the hypermetabolic regions than in the others. Through CellPhoneDB and NicheNet cell-cell communication analysis, it was found that in the hypermetabolic region, fibroblasts can utilize the lactate produced by glycolysis of epithelial cells to transform into inflammatory cancer-associated fibroblasts (iCAFs), and the increased expression of HIF1A in iCAFs promotes the transcriptional expression of CXCL12. The secretion of CXCL12 recruits regulatory T cells (Tregs), leading to Treg infiltration and increased TGF-ß secretion in the microenvironment and promotes the formation of a tumor immunosuppressive microenvironment. This study delineates the coordinate work axis of epithelial cells-iCAFs-Tregs in OSCC using SC, ST and TCGA bulk data, and highlights potential targets for therapy.


Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Humans , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Squamous Cell Carcinoma of Head and Neck , Mouth Neoplasms/genetics , Mouth Neoplasms/metabolism , Immunosuppression Therapy , Transforming Growth Factor beta , Gene Expression Profiling , Tumor Microenvironment
18.
Fitoterapia ; 172: 105766, 2024 Jan.
Article En | MEDLINE | ID: mdl-38056697

The phytoconstituents of the whole plants of Chloranthus holostegius were investigated. As a result, thirteen undescribed sesquiterpenes (chloranholosins A-M, 1-13), including ten acorane-type sesquiterpenes (1-10), one germacrene-type sesquiterpene (11), and two lindenane-type sesquiterpenes (12-13), together with fifteen known sesquiterpenes were isolated. Their structures and absolute configurations were elucidated by a comprehensive method including the spectroscopic data, electronic circular dichroism (ECD) calculations, and single-crystal X-ray diffraction. Chloranholosin L (12) was elucidated as a rare lindenane-type sesquiterpene featuring 14α-Me and 5-OH moieties. And chloranholosin M (13) was the first lindenane-type sesquiterpene possessing ß-cyclopropane, 14α-Me, and 5ß-H configuration from the family Chloranthaceae. Furthermore, twelve new isolates and some known sesquiterpenes were evaluated for their inhibitory activity against LPS-induced nitric oxide (NO) production in RAW 264.7 macrophage cells. Among them, compounds 12, 16, and 23 showed comparable inhibitory activity to that of the positive control, with IC50 values of 47.9, 41.5, and 48.3 µM, respectively.


Magnoliopsida , Sesquiterpenes , Molecular Structure , Magnoliopsida/chemistry , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Circular Dichroism
19.
Front Plant Sci ; 14: 1301445, 2023.
Article En | MEDLINE | ID: mdl-38107010

As we face increasing challenges of world food security and malnutrition, coarse cereals are coming into favor as an important supplement to human staple foods due to their high nutritional value. In addition, their functional components, such as flavonoids and polyphenols, make them an important food source for healthy diets. However, we lack a systematic understanding of the importance of coarse cereals for world food security and nutritional goals. This review summarizes the worldwide cultivation and distribution of coarse cereals, indicating that the global area for coarse cereal cultivation is steadily increasing. This paper also focuses on the special adaptive mechanisms of coarse cereals to drought and discusses the strategies to improve coarse cereal crop yields from the perspective of agricultural production systems. The future possibilities, challenges, and opportunities for coarse cereal production are summarized in the face of food security challenges, and new ideas for world coarse cereal production are suggested.

20.
Int J Ophthalmol ; 16(12): 1986-1995, 2023.
Article En | MEDLINE | ID: mdl-38111925

AIM: To elucidate the profiles of commensal bacteria on the ocular surfaces of patients with varying severity of dry eye (DE). METHODS: The single-center, prospective, case-control, observational study categorized all participants into three distinct groups: 1) control group (n=61), 2) mild DE group (n=56), and 3) moderate-to-severe DE group (n=82). Schirmer's tear secretion strips were used, and the bacterial microbiota was analyzed using 16S ribosomal ribonucleic acid gene sequencing. RESULTS: The three groups had significant differences in alpha diversity: the control group had the highest richness (Chao1, Faith's phylogenetic diversity), the mild DE group showed the highest diversity (Shannon, Simpson), and the moderate-to-severe DE group had the lowest of the above-mentioned indices. DE severity was positively correlated with a reduction in beta diversity of the microbial community, with the moderate-to-severe DE group exhibiting the lowest beta diversity. Linear discriminant analysis effect size presented distinct dominant taxa that significantly differed between each. Furthermore, the exacerbation of DE corresponded with the enrichment of certain pathogenic bacteria, as determined by random forest analysis. CONCLUSION: As DE severity worsens, microbial community diversity tends to decrease. DE development corresponds with changes in microbial constituents, primarily characterized by reduced microbial diversity and a more homogenous species composition.

...